Caractéristique d'un anneau et extensions simples - TD 2

1. Si R est un anneau avec car R = p où p est un nombre premier, alors

$$(a+b)^p = a^p + b^p$$
 et $(a-b)^p = a^p - b^p$

pour tous $a, b \in R$.

- **2.** Si R est un anneau intègre avec $\operatorname{car} R = p$ où p est un nombre premier, alors l'application (de Frobenius) $F: R \to R$, $a \mapsto a^p$ est un monomorphisme.
- 3. Trouver un exemple d'un corps infini de caractéristique positive.
- **4.** Montrer que $\operatorname{Frac}(\mathbb{Z}[i]) = \{a + bi \mid a, b \in \mathbb{Q}\} = \mathbb{Q}[i] = \mathbb{Q}(i)$.
- **5.** Soit E/F et $a, b \in E$. Montrer que F(a, b) = F(a)(b) = F(b)(a).
- **6.** Soient $F \subseteq E \subseteq K$ des corps tels que K est une extension simple de F. Montrer que K est une extension simple de E.
- 7. Soit E/F. Nous avons $[E:F]=1 \Leftrightarrow E=F$.
- **8.** Soit F un corps fini avec |F|=q, et soit E/F avec $[E:F]=n\in\mathbb{N}^*$. Montrer que E est un corps fini avec $|E|=q^n$.
- **9.** Si F est un corps fini, alors $|F| = p^n$ pour un certain $n \in \mathbb{N}^*$, où $p = \operatorname{car} F$.
- 10. Soient $F \subseteq E \subseteq K$ des corps tels que [K : F] = p, où p est un nombre premier. Dans ce cas, soit K = E soit E = F. De plus, K est une extension simple de F.
- 11. Soient $F_1 \subseteq F_2 \subseteq \cdots \subseteq F_n$ des corps, avec $n \geq 3$. Montrer que

$$[F_n:F_1] = \prod_{i=1}^{n-1} [F_{i+1}:F_i].$$